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ABSTRACT 
Food logging can help users understand their food choices 
and encourage healthier eating habits. However, current 
apps still pose many usability challenges, including tedious 
manual text entry of food names. Recently, advances in 
computer vision and deep learning are enabling automatic 
food recognition for instant and convenient logging. 
However, as a nascent technology, this suffers from 
inaccuracy, which may lead to poor adoption or misuse. We 
investigated the trade-off between accuracy and 
convenience of automatic photo recognition in comparison 
to manual search logging. Specifically, we have developed 
a mobile app prototype that integrates both photo 
recognition and search logging capabilities, and conducted 
formative investigations on the usability and usage of 
automatic photo recognition in food logging in a series of 
studies: online requirements survey, usability lab study, and 
1-week field trial in an Asian country. Participants were 
interested in convenient, automatic photo logging, but 
dominantly used manual search logging due to a lack of 
data coverage and accuracy. We identified reasons for poor 
accuracy and highlight complications in using inaccurate 
automatic photo logging. We further discuss opportunities 
for design and technology to address these challenges. 

Author Keywords 
Food Journals; Food Logging; Image Recognition; Mobile 
Applications; User Experience; Field Study 

ACM Classification Keywords 
H.5.2 User Interfaces: Mobile Dietary System 

INTRODUCTION 
There is an increasing concern for diet-related chronic 
diseases caused by having an unhealthy diet, such as 
obesity, heart diseases and cancers [41]. For example, 
consuming too many high-fat and energy dense (high 
caloric) foods with sedentary lifestyle can cause obesity 
[43]. The “risk of colorectal cancer could increase by 17% 

for every 100-gram portion of red meat eaten daily” [42]. 
Diabetes can be managed through weight loss [44] or 
carbohydrate counting [40]. Increasing user awareness of 
their behaviors can promote health behavior change (e.g., 
calorie tracking to choose lower-calorie foods [38]). Indeed, 
many consumers are willing to use mobile apps to monitor 
their food habits (e.g., [18, 27]). However, food logging 
apps continue to have many barriers [8], including having 
tedious manual text entry of food names. Fortunately, 
advances in computer vision and deep learning are enabling 
automatic food recognition for instant and convenient 
logging. However, this is still a nascent technology with 
issues in data coverage and accuracy. Will users prefer the 
convenience of automatic recognition over more predictable 
and accurate search text entry? In this work, we 
investigated the trade-off between the accuracy and 
convenience of automatic photo recognition for food 
logging with multiple surveys and a formative field trial.  

Our contributions are: (1) the development of Nibble, a 
mobile app with capabilities in both fast, automatic 
recognition in photo-based food logging and search text 
logging and (2) formative investigations with an online 
requirements survey on diet habits and food logging, 
usability lab study on logging preference and diet feedback, 
and 1-week field evaluation in an Asian country. We found 
that participants were willing to try automatic photo logging 
for its speed and convenience, but preferred manual search 
logging for its accuracy and reliability. We identify various 
reasons for inaccuracy and highlight issues that may arise 
when fully dependent on inaccurate automatic logging. 
With a deployment in an Asian city, we also discuss 
implications for localizing mobile food logging for the 
cultural context. 

RELATED WORK 
While traditional paper diaries have been recommended by 
dietitians [13], mobile apps have been developed to support 
food logging. Many apps simply digitize the text entry by 
providing a means to enter the food names, and this remains 
tedious even with search support [8]. Hence, several 
techniques have been developed to lower the barrier to food 
logging, such as using mobile phone cameras and other 
automatic sensing.  

Previously, mobile phone cameras were primarily used for 
data capture, while the interpretation of the image and food 
recognition was delegated to human effort. This is 
performed through expert feedback, peer rating, 
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crowdsourcing, or self-reflection. Professional dietitians 
can provide credible and accurate expert feedback to users 
and improve adherence [19, 21, 23], but relying on experts 
for each mobile user is expensive. On the other hand, The 
Eatery app used a free approach by requiring users to rate 
the healthiness of foods eaten by other users (peers) [16], 
though this suffered from low adherence (2.6% active 
users). A middle-ground approach uses crowdsourcing, 
which employs cheap online labor to recognize foods in the 
photos, but the per-image cost is non-trivial 
(USD1.40/photo) and labeling is relatively slow (M=94 
minutes) [28]. Cordiero et al. provide an interesting 
alternative where the user reflects on her own diet using her 
food photos [7], but this suffers from selection bias in users, 
and require unsustainable reflection effort. Epstein et al. 
extended this work to support mindfulness in a lightweight 
mobile app which only requires logging one meal per day 
[9]. In our work, we focus on fast, convenient food logging 
and feedback through automated nutrition analysis. 

Automating food recognition can provide a scalable, 
affordable means for nutrition analysis. Several methods 
include scanning receipts [23], chewing sounds [30] and 
ego-centric meal detection [37]. While these use 
commodity devices, we focus on ubiquitous smartphone 
cameras for food recognition. Recently, there has been 
significant research in using computer vision and machine 
learning for automatic food image recognition (e.g., [4, 11, 

25, 26]). Such technology can provide a basis for 
convenient and fast recognition in photo-based food 
logging. However, such research has focused on algorithm 
development and validation on datasets, and it is unclear 
how end-users will use them. Previous studies with user 
evaluations have explored the use of website interfaces [7, 
20] or mobile apps but with delayed feedback [16, 28]. In 
this work, our user study provides a formative investigation 
on the user preference and attitudes towards automatic 
photo logging in comparison with manual search logging. 

NIBBLE MOBILE APP PROTOTYPE 
We implemented Nibble, a mobile web app for photo food 
logging with two primary modes for logging: automated 
food recognition and manual search entry. Nibble is a 
wellness application designed to help users set healthy diet 
goals, display useful visual summaries and provide 
effective feedback to guide them towards healthier diets. 
Figure 1 describes key design features for the food logging. 

Food Recognition to Provide Nutrition Feedback 
To perform the food recognition, we used the FoodAI 
application programming interface (API) [11] which trained 
a Convolutional Neural Network (CNN) [22] on the top 100 
local foods in Singapore. However, in real-world usage, we 
did not expect the 100 foods to comprehensively cover 
foods that users may eat; our focus was to study the impact 
of inaccuracy in automatic logging. Once Nibble retrieves 
the food name, it looks up the nutritional information of the 
food item from two nutritional data sources: a food-
nutrition database provided by the Health Promotion Board 
of Singapore [15] and the Nutritionix API [29]. This 
nutrition data is presented as feedback to the user in terms 
of user friendly donut and time-series bar charts indicating 
calories, macronutrients, and micronutrients. The feedback 
is provided immediately after the food is logged and 
identified (post-logging) and through the day (daily). 

Other Behavioral Support Features 
To aid with usability and minimize confounds, Nibble has 
other features, such as reminder triggers [1] to prompt users 
to log their meals at their typical meal times, and weight 
goals [5] to help motivate users towards and objective. 
Reminders can mitigate the inconvenience of having to 
remember to log before eating the food at each meal. Goals 
can help promote sustained logging. 

METHOD 
We conducted formative investigations into the usability 
and usage of automated food recognition in a series of 
studies. We were primarily interested in evaluating the 
trade-off between accuracy and convenience of 
automated logging. First, we ran an online survey on diet 
habits and food logging to gather user requirement and 
barriers to photo-based food logging (Reddit: 31 global 
respondents). This helped us to identify key features to 
implement, such as the popularity of search logging. We 
then implemented an interactive mockup on a laptop and 

 
Figure 1. Screenshots of the Nibble app showing how a user 
logs food: first taking a picture via the smartphone camera 
(not shown), which gets recognized via the FoodAI API and 

returns (a) a list of candidate food names in under 1 sec. After 
choosing, the user (b) specifies the portion size and (c) gets 
nutrition feedback about calories and macronutrients in a 
diary. Since photo-based food recognition is nascent and 
novel, users may face issues in its reliability and trust, so 

Nibble also includes fallback methods for logging: (d) text 
search and (e) custom entry creation. 
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conducted a scenario-driven usability lab study (5 
participants). We took findings from this study to refine and 
add features to reduce usability confounds. We then 
deployed the Nibble mobile app prototype in a 1-week field 
study (6 university students) to evaluate user acceptance 
and usage of photo logging with real-time automated food 
recognition in the wild. To minimize risk to patients 
suffering from chronic disease, we targeted healthy 
individuals in this formative study. We instrumented Nibble 
for interaction logging, conducted pre/post-study interviews 
and surveys. All survey questions were asked on a 5-point 
Likert scale (≤–1: Disagree, ≥1: Agree). 

FINDINGS AND DISCUSSIONS 
We summarize the findings learned from designing and 
developing Nibble, and our three user studies. We found 
that participants were interested in convenient, automatic 
logging, but dominantly use manual search logging due to a 
lack of data coverage and accuracy. We identify reasons for 

poor accuracy and raise complications in using inaccurate 
automatic photo logging. 

While we did not have access to the training dataset to 
know the specific validation accuracy of the FoodAI 
recognition model, we evaluated the API against 300 
images scraped online across the 100 Asian food items 
represented in the API. We measured an accuracy of 96% 
for Top-1 labels. With larger validation datasets, on state-
of-the art models have achieved (51-79% Top-1 accuracy 
[4, 26]). Therefore, the API is very accurate for food dishes 
on which it was trained. 

Positive Interest in Automatic Photo Logging  
From our online survey, we found that 75% of our survey 
respondents with mobile food logging experience used text-
entry search logging. Although photographing food is 
popular on mobile social media apps [3], 70% of all survey 
respondents reported that they never take photos of their 
meals. Nevertheless, 73% of all respondents were willing to 
try photo food logging, giving promising results to develop 
photo logging in Nibble. With evidence indicating user 
interest in automated photo logging, we conducted our field 
study to evaluate how users used it in comparison to manual 
search logging. 

Dominant use of Reliable Manual Logging  
Our field participants used Nibble for 5-9 days. They 
logged 242 food items in total and averaged 2-10 items/day 
per participant. When logging food items, participants 
could first choose either to log using a photo or with search. 
If the photo log is not satisfactory, they could ultimately 
perform a search log. We consider this a photo attempt. 33 
logs (14%) were recorded as photo-logs, 30 (12%) as photo 
attempts which were ultimately recorded as search-logs, 
and 179 logs (74%) were recorded only using search. The 
choice for different logging types is more diverse for each 
meal that the participants logged. We defined consecutive 
food logs to be of the same meal if they were within 10 
minutes of each other. Participants logged 112 meals in 
total, 1-5 (Median=2) meals per day with 1-8 (Median=2) 
logs per meal. With multiple logs per meal, participants 
logged 30 meals (27%) using only photo-logging, 23 meals 
(21%) with both photo and search logging, and 59 meals 
(53%) using only search logging. 

The lack of usage of photo-logging reflected the lack of 
trust in its accuracy: “[I] would rather have NO photo 
recognition, or very good one. If it’s half-baked, it will slow 
down the entire app” (P5). P5 is a particularly notable 
participant whose logs were mostly based on search only 
(see Figure 2 and Figure 3). Only two field participants 
agreed that the photo recognition was accurate. Instead, 
they would revert to search logging: “[I] usually choose 
search logging because [I] forget to take [the] photo. 
Phone isn’t on me when I'm eating meals” (P4). “I use 
[search] when the photo logging fails” (P5).  

 
Figure 2. Different logging types that field participants chose 
for each logging event. Participants could have chosen to (1) 
only log a dish with automatic photo recognition, which may 

be correctly or wrongly recognized, (2) initially attempted 
photo logging, but switched to search, or (3) only used search 
and avoided taking photos. P5 mostly used search logging and 

logged many items, while P6 prioritized on photo logging. 

 
Figure 3. Different logging types used for each meal in a day. 
P5 logged the most number of meals, but mostly did not use 
photo logging.  P6 tried photo logging in all meals logged. 
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Coverage and Inaccuracy of Automated Photo Logging 
As expected with [5, 8, 20], we found database reliability to 
be a barrier to food logging. 5/6 of our field participants 
disagreed Nibble’s food-nutrition database was complete. 
This issue of coverage affects the completeness of the 
nutrition database, but also whether the food item was part 
of the image training dataset, i.e., as a class label. 

Even with inclusion into the dataset, the food item may be 
misrecognized and thus lead to accuracy issues in 
identification. Only two field participants agreed that their 
food photos were accurately recognized. This led to 
uncertainty in the outcome of the photo logging, e.g.: “I 
have to take the photo and hope that the right recognition 
comes out” (P3).  

We analyzed the logged photos and found that 21/33 (64% 
accuracy) photos were correctly classified (Top-1 label). 
Nibble showed multiple alternative labels for each photo 
recognition. However, our analysis found that in our field 
trial, if the Top-1 label was incorrect, then the true label 
was also not in the Top-5. This is because the recognizer 
was never trained on the food dishes Therefore, for our 
results, the Top-5 accuracy was no better than that for Top-
1. If we account for photo attempt logs (photo2search) as 
indicating misrecognitions, then 21/63 (33%) of photos are 
correctly classified. These are lower accuracies in 
comparison to evaluations with curated image datasets, per 
our validation study (96% accuracy) and published state-of 
the-art benchmarks (51-79% accuracy [4, 26]). This 
demonstrates an appreciable loss in food recognition 
accuracy when running in the field with a wider diversity of 
foods and user behavior, compared to testing with a curated 
validation dataset or in the lab. 

Reasons for Inaccurate Automated Photo Logging 
With an initial focus on local foods, international cuisine 
was not recognizable: “exotic food such as ramen, were 
impossible to log correctly” (P4); some participants (P1 and 
P5) also logged many Western dishes which were not 
covered in the image training dataset. Also, although food 
recognition can provide educational value to tourists, this 
puts further demands on the food dataset/database coverage 
in foreign countries: “I was in Kuching [Malaysia]. Zichar 
restaurants sell non-local food” (P1). 

Another difficulty that field participants faced was trying to 
recognize “mixed” or heterogeneous foods in a single dish. 
“Things like mixed vegetable rice, economical bee hoon 
that had multiple varying components” (P4). “Mixed 
Vegetable Rice, Mixed Western food are hard to log. 
Western food has lamb, coleslaw, hash brown. It takes me 6 
minutes to log foods one by one. I'm not really a person to 
take photos of food. My food becomes cold after taking 
photos of all the parts.” (P5). Figure 4 demonstrates some 
examples of how “mixed rice” dishes can be wrongly 
classified as other dishes. The prevalence of “mixed” foods 
demonstrates the need for classifiers that can segment 
images to detect and identify multiple foods in individual 
images [25, 26]. 

Complications using Inaccurate Automated Logging 
Interestingly, some participants found that photo-based 
logging can be inconvenient. For example, P1 found it too 
tedious to properly frame food photos for recognition: 
“When you take pic you have to aim camera. Searching just 
type in can already” (P1). By analyzing his images, we 
found that P1 typically ate mixed foods (e.g., mixed rice, 
dim sum, western food with lamb chop and pasta), but 
attempted to isolate each food item in each photo. 
Supporting “fine grained classification” with image 
segmentation [26] can allow multiple food items to be 
recognized in one photo to avoid such tedious photography. 

While inaccurate photo recognition may lead some 
participants (e.g., P5) to prefer manual search logging 
instead, some participants (e.g., P6, see Figure 2 and Figure 
3) attempted to use photo logging often. P6 attempted photo 
logging for all meals and ultimately kept 7 (50%) of his 
logs as photo logs (no search). However, our analysis found 
that four (57%) of his photo logs were wrongly or only 
partially correctly classified (e.g., Figure 4b). Therefore, the 
convenience of automated logging may lead to more 
inaccurate data being logged instead of the user only 
entering high quality text inputs. This raises a challenge to 
identifying automatically logged data that the user accepts 
because they seem “good enough” to the lay end-user but 
may not be as scientifically or clinically valid (e.g., to a 
professional dietitian). 

CHALLENGES FOR AUTOMATIC FOOD LOGGING 
Our results demonstrate the continued need to improve 
accuracy in automatic photo logging to help user adoption 

 
Figure 4. Examples of photos that field participants took 

indicating how recognition could be correct or wrong: (a) dish 
correctly recognized as Curry Chicken, (b) mixed rice dish 
partially correctly recognized as Curry Chicken, though it 
could have curry chicken (white box added for clarity), (c) 

dish correctly recognized as Roasted Duck, (d) mixed rice dish 
incorrectly recognized as Duck Rice. 
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of more convenient logging. We have reiterated issues in 
food database coverage and classifier accuracy. However, 
we have also raised issues in usability and overly trusting 
automated logging that is somewhat accurate. Next, we 
discuss challenges in deploying food logging in Asia. 

Scalability of Nutrition Database and Photo Datasets 
Much research into computer vision to automatically 
recognize foods have been mostly limited to 100-200 food 
dishes (e.g., [4, 25, 26]). However, in the field, there are 
many diverse foods in a given community, especially in 
cosmopolitan cities. Even in a small country, Singapore, 
there can be a large diversity of foods: Wikipedia catalogs 
almost 300 local foods [36], and the government’s Health 
Promotion Board curates the nutrition of 3531 food items 
[15]. Typical CNN-based object recognition trains models 
on 1000 clean images of each item [4, 22, 26]. Collecting 
and filtering images for only 100 foods will require 100,000 
images; this is tedious for an individual or small team and 
typically done via crowdsourcing (e.g., [30]). Furthermore, 
even as we build a training dataset to support a high variety 
of food, this reduces the accuracy of the CNN model 
because of having too many classification classes. One 
potential remedy is to organize the foods into fewer 
categories or cuisine types and use a cascade of models, or 
use contextual features to limit the foods to recognize (e.g., 
using location to constrain to certain restaurants [3, 26]). 

Localization of Food 
Food recognition datasets have mainly been based on 
western food dishes [4, 26], so this omits many Asian 
foods. It is important to localize the food image dataset to 
the location and cuisine culture of the user. Recently, there 
have been classifiers trained on Japanese [25] and Chinese 
[5] foods, while our dataset is trained on Singaporean foods 
[11]. 

Furthermore, communal eating is common in Asian and 
other ethnic cultures [12]. Food would be presented at the 
center of a table for sharing with family portion sizes. P3 
described challenges in discriminating what one has eaten 
from the full shared meal: “When I am having "Zi Char" 
[home-cooked meals with multiple dishes] with my family 
or having... these are hard to log. I’m a bit lazy to log all, 
especially when the dish is hard to find, I don’t log. … 
Some dishes I just took a few bites. Those [portion sizes] 
were a bit hard to estimate.” 

Localization of Food Expertise 
Automated or semi-automated food logging relies on 
human intelligence at some point in the data processing. 
Crowdsourcing methods employ human expertise at 
logging time, while CNN models leverage on human 
labeling when creating and curating the training dataset. In 
all cases, being able to recognize foods depends on the 
worker’s or user’s familiarity with the cuisine. 

Crowdsourcing (commonly using Amazon Mechanical 
Turk) typically has workers based in the United States. 

Methods to leverage this workforce to recognize ethnic or 
regional foods may not work due to the lack of cultural 
familiarity. For example, Laksa may be misinterpreted as 
curry or Mee Goreng as a tomato-sauce pasta. One potential 
remedy is to use computer vision to recognize cuisine type 
and assign to crowdworkers from a specific geography. 

Peer rating can be made suitable with a global user base by 
limiting to the user’s local community who are familiar 
with her cuisine. However, this method suffers from low 
user engagement of even as low as 2.6% [16]. 

Expert feedback: many manual food recognition apps use 
expert dietitians who are on staff or freelancing (e.g., [14, 
21, 32]). This is expensive since registered or accredited 
dietitians have to be on call. Furthermore, while dietetics is 
a common profession in the US (100k members in the 
Academy of Nutrition and Dietetics [1]), there is a scarcity 
of practitioners in some countries (in Singapore: 52 
dietitians and 18 nutritionists in the SNDA [33, 35]). 
Additionally, nutrition science knowledge is generally 
consistent across countries, but there are slight differences 
in treatment method (e.g., AND Nutrition Care Process [17] 
vs. BDA Nutrition and Dietetic Process [13]). Moreover, 
the provision of actionable recommendations will vary by 
country and culture [13]. Therefore, using a US-based 
dietitian freelancer will not be ideal for global consumers.  

CONCLUSION AND FUTURE WORK 
We conducted formative investigations into the usage and 
trade-offs in using convenient but inaccurate, automatic 
photo logging and manual search logging for food 
journaling. We found that participants were willing to try 
and occasionally used automatic photo logging for its speed 
and convenience, but preferred manual search logging for 
its accuracy and reliability. We identified various reasons 
for inaccurate recognition and highlighted issues that may 
arise when depending on inaccurate automatic logging. We 
discussed challenges in deploying automated food logging 
in an Asian context. 

For future work, we intend to address several of the 
challenges and deploy a more robust solution for food 
logging on patients suffering from specific chronic diseases 
or health risks. To improve photo recognition for foods, we 
plan to support the recognition of “mixed rice” dishes by 
performing image segmentation [26] or by recognizing 
ingredients (e.g., [5]). Moreover, as users photograph foods 
specific to their habits, this introduces new dishes which we 
can add to the training dataset to improve the image 
recognition model through active learning [33].  
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