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ABSTRACT 
Sometimes users fail to notice a change that just took place 
on their display. For example, the user may have acciden-
tally deleted an icon or a remote collaborator may have 
changed settings in a control panel. Animated transitions 
can help, but they force users to wait for the animation to 
complete. This can be cumbersome, especially in situations 
where users did not need an explanation. We propose a 
different approach. Phosphor objects show the outcome of 
their transition instantly; at the same time they explain their 
change in retrospect. Manipulating a phosphor slider, for 
example, leaves an afterglow that illustrates how the knob 
moved. The parallelism of instant outcome and explanation 
supports both types of users. Users who already understood 
the transition can continue interacting without delay, while 
those who are inexperienced or may have been distracted 
can take time to view the effects at their own pace. We pre-
sent a framework of transition designs for widgets, icons, 
and objects in drawing programs. We evaluate phosphor 
objects in two user studies and report significant perform-
ance benefits for phosphor objects. 
ACM Classification: H5.2 [Information interfaces and 
presentation]: User Interfaces. - Graphical user interfaces. 
General terms: Design, Human Factors. 
Keywords: Phosphor, comic animation, cartoon animation, 
user interfaces, information visualization, diagrams. 

INTRODUCTION 
Computer users sometimes make mistakes, such as acciden-
tally deleting an icon or filing it into the wrong folder. 
Similarly, unexpected things may occur in collaboration 
scenarios. Users trying to replicate a process demonstrated 
by a collaborator may later realize that they missed some of 
the steps. This is particularly difficult for actions that leave 
no trace, such as shortcut commands. 
The potential changes that users need to keep track of con-
tinues to rise with increasing user interface complexity, 
more concurrently running applications, large screens 
where the user may be attending to the wrong location, and 

the possibility of remote collaboration. Without knowing 
what changed and how it changed, users can find it hard to 
detect and correct unintended or unexpected actions. 
Animated transitions have been proposed to help users un-
derstand changes in the user interface [9, 19] and have 
found their way into a range of products. Windows Media 
Player 10, for example, hides its play controls in fullscreen 
mode by slowly moving them off screen. While this can 
help users understand where the controls went and how to 
get them back, it also introduces “lag” into the interaction, 
i.e., it forces users to wait for the animation to complete. 
For experienced users who do not need an explanation, this 
forced pause can be cumbersome and may break their con-
centration. 

 
Figure 1: These phosphor widgets use green after-
glow effects to show how they have changed. The 
slider labeled “volume” was dragged all the way to 
the left. Two of the checkboxes in the next row were 
unchecked. The combo box was set from 1 to 2. 

PHOSPHOR USER INTERFACE OBJECTS 
We propose explaining user interface transitions without 
forcing users to wait. We define a phosphor transition as a 
transition that: 
1. shows the outcome of the change instantly and  
2. explains the change in retrospect using a diagrammatic 

depiction 

The space of retrospective diagrammatic descriptions en-
compasses a great number of possible designs. In this pa-
per, we concentrate on a specific subset based on the notion 
of afterglow. Figure 1 shows an example. When a user op-
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erates the shown phosphor widgets—using the mouse or a 
shortcut—a stylized afterglow effect shows how they have 
changed. In some cases, such as the slider, the afterglow is 
an almost realistic depiction of the motion that took place 
during the change. Widgets that change in more complex 
ways, such as the combo box, are provided with a more 
abstract and symbolic afterglow in order to limit clutter. 
Phosphor widgets are designed to focus users’ attention on 
objects that have changed. If users believe a manipulation 
took place in error, they can undo the action by returning 
the widget to the previous state suggested by the afterglow. 
Afterglow also helps users to observe changes that they 
have not initiated and hence provides better understanding 
in scenarios such as remote collaboration. 
Afterglow effects are typically set to fade over a period of a 
few seconds. Actions occurring in rapid succession will 
therefore result in multiple concurrent afterglow effects. 
This is intended to help users catch up with fast bursts of 
activity as might occur during demonstrations or collabora-
tive work.  

Resulting benefits 
The proposed approach differs substantially from animated 
transitions: animated transitions explain the transition and 
then continue the regular execution of the program; phos-
phor transitions do both at the same time. 
This parallelism results in three main benefits: (1) Users 
can choose whether to attend to the explanation or to con-
tinue with the regular program execution. Users are never 
forced to wait. (2) Since users are never forced to wait, ad-
ditional display time comes at a low price. Inexperienced or 
distracted users can therefore be accommodated with in-
creased afterglow durations. (3) Since display time comes 
at a low price, application designers can pick a reasonable 
upper bound. This frees them from having to hand-optimize 
duration—a major challenge faced by designers of ani-
mated transitions. 
The use of phosphor widgets introduces a tension between 
screen real estate and interaction time. Because phosphor 
widgets are susceptible to clutter, they require careful de-
sign. 
In the remainder of this paper, we give a brief overview of 
the related work. Then we take a closer look at the “visual 
language” of phosphor. We present designs for transitions 
for different types of interface objects and explain how to 
minimize clutter. After a brief description of our implemen-
tations we present two user studies. The first study finds 
significant performance benefits for phosphor over a con-
trol condition: Participants performed a simulated collabo-
ration task faster when widgets were provided with an af-
terglow. The second user study finds that phosphor’s task 
performance is similar or better to animated transitions. We 
conclude with a summary of our findings and an outlook to 
future work. 

RELATED WORK 
Two main fields of related work for Phosphor are animated 
transitions and diagrammatic explanations. 

Animated Transitions 
Animated transitions are one of the eight classes of anima-
tion in the user interface [2]. Benefits of animated transi-
tions include that they can help increase the saliency of no-
tifications [4], draw attention to peripheral displays, such as 
stock tickers [24], and that they can help illustrate causal 
relationships [33]. Animated transitions can help users fol-
low transitions between views [3], e.g., in applications dis-
playing complex data, such as trees [28]. By adding effects 
inspired by cartoons such as anticipation and follow-
through, researchers have obtained a more lifelike effect 
(cartoon animation [9, 31]). 
Research has not converged on consistent results regarding 
the efficiency of animated displays [32]. Animated illustra-
tions may require more cognitive load than static ones [21]. 
Psychophysics research has shown that most users have 
difficulty tracking five or more objects [8, 36, 25]. Motion 
is hard to ignore and may thus cause users to be distracted 
by animated transitions [4]. 
Stasko [29] points out that animation duration is a crucial 
factor in the design of animation. To minimize lag, an ani-
mation should be fast; making an animation too fast, how-
ever, may lose the user. Researchers exploring animation 
durations have found that 300ms can work well for simple 
scrolling transition [19], while comprehending 3D transi-
tions can require several seconds [27]. Optimum animation 
speed depends on user- and situation-specific factors such 
as familiarity, expectation, attentiveness, and perceptual 
abilities and therefore are difficult to predict. 
While designers of phosphor objects also need to set the 
duration for fading the afterglow, the question is less crucial 
because the afterglow does not prevent users from continu-
ing their task. 

Diagrams in information visualization 
In the fields of visualization and graphics, researchers have 
proposed illustrating dynamic phenomena using static de-
pictions. Diagrammatic illustrations are amenable to print-
ing [1], and can help users discover trends in large sets of 
motion data [10]. On the flip side, users do not process dia-
grams immediately and as a whole; users first have to dis-
cover the best order to process the information [7]. 
Diagrammatic summaries come in many different styles. 
Feiner borrows principles from technical illustration [11], 
while Hill and Hollan use them to illustrate the past usage 
of a document [16]. Carefully selected individual frames 
can be combined to form a strobe effect (Action Synopsis 
[1]). Chronovolumes combine successive frames into a con-
tinuous motion blur. They use color transitions to depict the 
progression of time [35]. Speed lines [22] are a more ab-
stract type of motion blur created using non-photorealistic 
rendering [26]. Speed lines have also been used to enhance 
the experience of animation sequences in video games [14] 
and to help users make sense of game map overviews [17]. 
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Comics use static depictions of dynamic contents that have 
been adopted by user interface research such as Comic Chat 
[20]. The individual frames of a comic are multiplexed in 
space, unlike cartoons that show them in temporal succes-
sion [23]. The visual language of phosphor is similar to that 
of comic books in that both depict the past; the act of run-
ning is shown by adding motion blur behind the character; a 
punch is shown as a fist that has already followed through. 
Story boards in contrast tend to depict the future.  

Diagrammatic transitions in the user interface 
There are only a few examples of diagrammatic cues de-
picting motion in user interfaces. Mac OS X complements 
animation with a motion blur when iconifying windows. 
High-density cursor improves target acquisition by adding 
a strobe effect to the mouse trajectory [5]. Gutwin and Pen-
ner showed that similar cues applied to telepointers can 
improve collaboration [13]. Kaptelinin et al. showed that a 
static cue can improve the reading performance of scrolled 
pages. Their design minimizes clutter by using only an out-
line to highlight “new” screen content [18]. Our work on 
phosphor is different in that it focuses on individual objects, 
rather than view navigation. Our paper generalizes the tran-
sition styles of drag-and-pop, an interaction technique for 
accessing distant content on wall-size displays [6]. 

THE VISUAL LANGUAGE OF PHOSPHOR 
In this section, we show how the design space of phosphor 
is applicable to many objects and transitions, such as icons, 
windows, or objects in a drawing program. Such objects 
may experience a broad range of transitions, such as rota-
tion, change in stacking order, or changes in opacity. 
Figure 2 illustrates the general concept for creating a phos-
phor transition. First, we envision an animated transition. 
Second, we conceptualize this transition as a static depic-
tion by projecting along the time axis. The result is a single 
image consisting of the initial state of the transition, the 
final state, and the path in between. 

 
Figure 2: The afterglow of phosphor objects is gen-
erated by projecting an animated transition along 
its time axis. 

For translations, e.g., the knob of a slider, this process is 
fairly straightforward and can be implemented using a mo-

tion blur effect. For in-place transitions, such as a rotation 
or change in opacity, however, all frames of the animation 
fall onto the same location. We present measures to avoid 
occlusion in such cases. We also present cues that compen-
sate for the loss of temporal order during the projection 
step. We first present visual styles for paths. 
For the sake of visual consistency, all examples in this sec-
tion use the same visual objects, here two desktop icons. 
These are intended as exemplars for phosphor objects in 
general. 

Paths styles: strobe, motion blur, and speed lines 
Figure 3 shows the three basic path styles we have used, all 
inspired by comic books [23]. 
The strobe style shown in Figure 3a consists of a finite 
number of partially overlapping frames. It can help convey 
complex transitions by breaking it down into a frame-by-
frame illustration. 
The motion blur style shown in Figure 3b is generated from 
a single copy of the object by first compressing it to single-
pixel-width and then by stretching it to the desired length. 
This approach leads to less clutter, as the individual frames 
dissolve into a single gestalt. 
In a literal implementation of strobes and motion blur, long 
paths would be practically invisible, because each of the n 
frames the path is composed from has opacity of only 1/n 
[5]. We ensure path visibility by increasing path opacity to 
a point were paths are clearly visible. Path opacity is sub-
ject to a tradeoff between visibility and clutter, but we ob-
tained good results with opacities of 50% for the densest 
part of the path. 
For most of our applications, as well as both user studies 
reported in this paper, we use the speed lines style shown in 
Figure 3c. This style consists of a pair of edge lines and a 
center line on top of a background surface, as used in [6]. It 
provides a good indication of orientation and causes less 
clutter than the motion blur design. By using characteristic 
colors sampled from the object, speed line paths often also 
resemble their parent objects more than the washed out 
colors of the actual motion blur. This helps visually match 
paths with parent objects and visually separate them from 
other intersecting paths (see also Figure 11). 

cba  
Figure 3: Basic path styles (a) strobe (b) motion 
blur, and (c) speed lines. 

We make paths transparent to mouse input to allow users to 
interact with screen content temporarily occluded by a path. 
If a transition is repeated while its afterglow is still on 
screen (for example, when manually “nudging” a geometric 
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object in a drawing program), we keep the initial state in 
place and only extend the path. 

Reestablishing the time dimension 
Paths do not inherently offer any sense of directionality. So, 
to distinguish an object moving from A to B from an object 
moving from B to A, we add three cues to reinforce tempo-
ral order, 
1. Fading “old” path segments: We render path segments 
increasingly translucent the further away they are from the 
final state. Accordingly, fading an afterglow causes the path 
to disappear initial state-first (Figure 4a). 

a b
 

Figure 4: (a) Paths fade initial state first. (b) The 
temporal order of this strobe-style path is empha-
sized by stacking frames in chronological order. 

2. Stacking newer frames on top of older frames: We al-
ways render the path on top of the initial state and the final 
state on top of everything. This also guarantees that the 
final state is never occluded and always fully readable. We 
use the same concept among the individual frames of strobe 
style paths (Figure 4b).  
3. Distinctive initial states: In order to help users distin-
guish initial and final state, we render them differently if 
possible. We always render the object’s final state as is; 
only then can we guarantee that it is legible and immedi-
ately available for further interaction.. In Figure 4a we ren-
dered the initial state as an outline to suggest the absence of 
that object, as appropriate for a move operation. We discuss 
other styles in a later section. 
We decided against other potentially useful cues for tempo-
ral order, such as texturing paths with arrow symbols or the 
use of animated textures. Animated textures do not impact 
the readability or accessibility of the object’s final state, but  
they seemed distracting. While tapered paths [17] could be 
used for this purpose, we instead chose to use this cue to 
depict transient operations as described below. 

Depicting the operation causing the translation 
We use different path shapes and initial states to disam-
biguate whether the translation of an object occurred be-
cause the object was moved, copied, or filed in a subfolder 
Move vs. copy: A copy operation is a move operation that 
does not disturb the initial state. We therefore depict copy 
operations as move operations with a solid initial state 
(Figure 5b). 

a bmove copy
 

Figure 5: Whether a folder is being (a) moved or 
(b) copied is determined by the initial state visuals. 

Concave paths indicate transience: Some translations are 
transient, such as a translation suggested by the system but 
not yet confirmed by the user. We depict such translations 
using paths with a narrow midriff section to suggest that the 
final state is connected to the initial state using an elastic 
rubber band that will eventually pull the final state back 
(Figure 6a). The same effect can also be used to create and 
remove a temporary copy (Figure 6b) as done by drag-and-
pop [6]. Since the path is attached to the initial state we do 
not fade it. Note how the diagrammatic nature of phosphor 
allows depicting the future. 

a btemp. move temp. copy
 

Figure 6: A narrow midriff on this path indicates that 
this folder was (a) moved or (b) copied temporarily. 

Tapered paths indicate a child-of relationship: Sometimes 
an object is spawned or unveiled by another object, such as 
a child window being spawned by its parent window or a 
folder being extracted from another folder. To avoid confu-
sion with a copy operation, we use a tapered path, suggest-
ing that an object needs to be shrunk before it can fit into 
another object (Figure 7a) and that a restored object starts 
small and ends large (Figure 7b). 

a bfile extract  
Figure 7: The tapered path indicates that (a) the 
folder at the bottom left was dropped into the other 
folder or (b) expanded from it. 

Transitions that do not involve translation 
When collapsing the time dimension for transitions that 
lack translation, all frames project onto the same location. 
We alleviate this problem by adding motion to the animated 
transition before we project it so that phosphor can depict 
time in screen space. Figure 8 shows an example. 
(a) Bringing an object to the front can be thought of as a 
transition exclusively in Z-direction [9]. (b) Before 
projecting, we add motion to the path such that it evades the 
other object. (c) Collapsing this second animation provides 
the desired path. 
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Figure 8: (a) initial animation, (b) adding vertical 
motion, and (c) resulting phosphor transition. 

Revealing the initial state: Adding motion to the path re-
veals the path, yet the initial state remains occluded. We 
ensure the visibility of the initial state by translating it for-
ward in time along the path, as shown in Figure 9a. In cases 
where we can expect users to know that this translation is 
not part of the transition, we can omit the path (Figure 9b 
and c, as well as the combo box in Figure 1). 

ba c  
Figure 9: (a) The initial state of this scaled-up ob-
ject was revealed by moving it out along the path. 
(b) If unambiguous, we may omit the path. (c) The 
matching scaling down transition. 

Out-of-band properties in the initial state: In many of our 
examples, we repurposed properties of the initial state. We 
used texture to convey temporal order (Figure 4), size to 
convey an inclusion relationship (Figure 7), and location to 
avoid occlusion (Figure 9). But how can users know that 
the object in Figure 4 did not change from an outline to a 
solid object, that nothing shrank in Figure 7, and that noth-
ing moved in Figure 9? We used what we call out-of-band 
signals, another example of which is shown in Figure 10a 
and b.  

a b c d
 

Figure 10: Transition (a) from transparent to 
opaque and (b) from 50% transparent to opaque. 
(c) A rotation may be confused with a translation, 
unless (d) an out-of-band cue is added. 

This transition shows an increase in opacity by showing a 
“transparent” initial state. Using real transparency would 
cause the initial state to be invisible. We therefore use a 
symbolic representation instead, here a checkerboard pat-
tern that shines through. This approach is commonly used 
in painting programs, such as Adobe Photoshop. It works, 
because checker boards are unlikely to occur in the applica-
tion area of interest, such as photographs or icons. The limi-

tation of this approach is that the choice of out-of-band sig-
nals is application-specific. Application areas that include 
checker board textures, for example, require using a differ-
ent stimulus. We have used the out-of-band concept for a 
wide range of transitions, including rotation (Figure 10c 
and d). 

Transitions that involve multiple objects 
If paths cross at an angle, speed line gestalt is sufficient to 
assure readability (Figure 11a). During pilot testing, we 
found that up to ten simultaneous translations on the screen 
were visually separable, even when they where of the same 
color scheme. For cases of exact overlap (Figure 11b), 
readability can be maintained by letting paths avoid each 
other (Figure 11c). 

a b c  
Figure 11: (a) In the general case, path overlap is 
not a problem. (b) Objects trading places (c) is bet-
ter handled with paths avoiding each other. 

If large numbers of objects move, we may reduce clutter by 
shortening paths (Figure 12a, see also [30]). We can use a 
single path for groups of objects performing the same tran-
sition (Figure 12b). 

ba  
Figure 12: Avoiding clutter by (a) shortening paths 
and (b) using a single path object. 

IMPLEMENTATION 
In order to try out our concepts and to run the user studies 
reported below, we created two prototypical implementa-
tions of phosphor. 
Figure 13 shows a screenshot from our first prototype. It 
simulates a computer desktop and allows us to create a va-
riety of different transition types. It is implemented in Del-
phi using the .NET framework. The prototype allows load-
ing arbitrary graphics for objects and if desired separate 
graphics for their initial states. It generates different shapes 
of paths using Bezier curves with four control points. Col-
ors of speed line path are generated automatically by sam-
pling and averaging colors from the respective objects. The 
prototype allows customizing path opacity; the defaults are 
12.5% to 50% opacity for the path fill and 25% to 87.5% 
for path edges. Finally, this prototype also offers animated 
transitions. 
Our second prototype is shown in Figure 14, a close-up in 
Figure 1. It is implemented in Macromedia Flash and offers 
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phosphor versions of standard GUI widgets. Widgets are 
implemented as Flash components [12], which allows reus-
ing them in other Flash applications. 

 
Figure 13: Our Delphi-based prototype showing 
several phosphor transitions. 

To objectively evaluate user performance using phosphor 
transitions we carried out two user studies.  

USER STUDY 1: FOLLOWING A COLLABORATOR 
The purpose of the first study was to examine whether 
phosphor helps users visually track transitions in the user 
interface. The participant’s task was to watch a (simulated) 
collaborator adjust widgets in a control panel dialog. Then 
participants had to demonstrate their comprehension by 
undoing as many of the observed actions as possible. Our 
main hypothesis was that the phosphor interface condition 
would lead to better perception and memorization of the 
activities, which we would measure as faster task perform-
ance. 

Task 
Each trial took place in the following six steps. (1) Users 
clicked a “go” button. (2) A dialog appeared and the user’s 
mouse was disabled. The dialog contained a mix of sliders, 
combo boxes, and checkboxes laid out in a regular 5x8 grid 
as shown in Figure 14. Layout and labeling of widgets 
changed each trial. To indicate the non-interactivity, the 
window bar of the dialog was shown in gray. (3) After a 
pause of 500 milliseconds, the mouse pointer started trav-
ersing the screen and consecutively adjusted six of the forty 
widgets in the grid, i.e., two sliders, two checkboxes, and 
two combo boxes. Simulating a human motion pattern, the 
pointer would hover 200ms over a widget before adjusting 
it. There were three playback speed conditions. In playback 
speed conditions “medium” the mouse traversal from one 
widget to the next took 600ms, 800ms, or 1000ms in ran-
dom order, always resulting in the same overall duration of 
4800 ms. In the “slow” and “fast” playback speed condi-
tions all traversal and hover times were multiplied by fac-
tors 1.3 and 0.7 respectively. (4) There was a 4000ms 
pause. At the end of that pause, all of the 4000ms afterglow 
effects had faded completely. (5) The mouse was re-
enabled, the window bar of the dialog turned blue, and a 
text was displayed instructing participants to start undoing 
as many of the observed changes as possible. (6) The par-

ticipant adjusted as many widgets as they desired. Then 
they clicked the dialog’s “OK” button, which closed the 
dialog and completed the trial. Task time was counted from 
the moment the dialog turned interactive until the moment 
the user hit the “OK” button. 

Interfaces 
There were two interface conditions, phosphor and control. 
The phosphor condition was identical to the control condi-
tion, except that widgets displayed an afterglow after being 
adjusted by script or participant as shown in Figure 1. Each 
afterglow faded independently after 4000ms. 

 
Figure 14: The apparatus used in the first user 
study. The user’s task was to undo as many of the 
six adjustments observed. 

Experimental design 
The study design was within subjects 2 × 3 (user interface x 
playback speed) with 8 repetitions for each cell. For each 
trial, we recorded completion time and error. Error was any 
difference between the initial state before the automated 
traversal and the final state after the user adjustments; click-
ing “OK” without making any adjustments, for example, 
resulting in six errors. Interface order and speed factors 
were counterbalanced. Dialog layout was randomized. 
Participants received training upfront and at the beginning 
of each block. They filled in a questionnaire at the end of 
the study related to subjective preference, learnability of 
phosphor transitions, and usefulness. The study took about 
20 min per participant. 

Apparatus 
The experiment was run on a PC running WindowsXP with 
a 17” LCD monitor, at a resolution of 1280x1024 pixels. 
The interface used in this study was implemented in Mac-
romedia Flash as described earlier. The optical Dell mouse 
was set to a medium mouse speed. 

Participants 
12 university students (1 female) between the ages of 24 
and 30 participated in this study. All had experience with 
graphical user interfaces and mice and had normal or cor-
rected to normal vision and color vision. 
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Hypotheses 
We had two hypotheses: (H1) Participants would be able to 
perceive and memorize changes better in the phosphor con-
dition. (H2) We expected the increased performance to 
cause participants to subjectively prefer the phosphor inter-
face. We had no particular hypothesis about the impact of 
playback speed. 
Results 
We analyzed the data for this experiment at the summary 
level, taking the median of the completion times and the 
mean of the errors over the 8 trials in each condition.. The 
dependent variables were error rate and task completion 
time. We analyzed each variable using a 2 (interface) × 3 
(playback speed) repeated measures analysis of variance 
(RM-ANOVA). 
For task completion time, we observed a significant main 
effect of interface (F(1,11)=20.07, p=.001), with users 
completing the task faster with the phosphor interface 
(Med=7.17 s) than with the control interface (Med=9.35 s). 
We also observed a significant main effect of playback 
speed (F(2,22)=4.06, p=.031). Paired comparisons using 
Bonferroni corrections showed that this difference was 
driven by significant differences between the fastest condi-
tion (Med=7.34 s) with the slowest condition (Med=9.01 s, 
p=.02). We observed no significant interactions between 
the two factors.  
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Figure 15: Task completion times of the first user 
study. Participants performed the undo task faster 
when widgets were provided with a phosphor effect 
(times in seconds, +/- standard error of mean). 

We observed no significant effects when we examined error 
rates. Users made on average about 3.1 errors, i.e., they 
were able to undo about half of the observed changes, with 
no significant differences across conditions. Hence, while 
Phosphor seemed to help with the speed at which users 
were able to retrieve answers from memory, our task and 
error rate metric was not sensitive enough to pick up differ-
ences when using this interface. 
At the end of the experiment, participants answered a ques-
tionnaire. All 12 participants preferred the phosphor inter-
face to the control interface. On a 7-point Likert scale, par-
ticipants agreed that the phosphor interface helped them 
remember more changes (mean value: 5.9). Participants 

also expressed that it did not take long to get used to the 
phosphor interface (mean value: 2.6). 

Discussion 
The timing data supports our first hypothesis. We believe 
that the difference in completion times represented the level 
of confidence that users had in their responses. When they 
used the Phosphor interface, they were more certain of the 
answers and spent less time thinking when undoing 
changes. This performance difference also manifested itself 
in participants’ subjective preference. 
Interestingly, participants performed faster in the faster 
playback conditions. One possible interpretation is that the 
reduced time spent watching the actions helped participants 
keep the actions in their working memory. 

USER STUDY 2: COMPARISON WITH ANIMATION 
The purpose of the second user study was to compare phos-
phor with animated transitions. While phosphor effects 
have the benefit of not introducing lag, we were wondering 
if this benefit would come at the expense of reduced task 
performance when compared with animation. 
We also used this experiment to learn more about how mul-
tiple simultaneous transition effects and distractors impact 
user performance and user preference.  

Tasks 
This study simulated the situation of a user who has copied 
and pasted one or more files into a folder window and who 
now tries to visually verify whether the expected action has 
taken place. 
Each trial proceeded as follows. (1) A simulated windows 
desktop screen was displayed. The screen contained 11 
small windows and 25 icons of the same file type. (2) For 
1200ms, the interface highlighted three icons and one target 
window as shown in Figure 16a. (3) The highlights were 
removed to prevent users from completing the task by sim-
ply tracking the highlights. There was a 500ms pause. 
(4) Three icons moved across the screen. (5) Participants 
pressed the “Y” key if they felt that the shown transition 
corresponded to the highlighting showed earlier; otherwise 
they pressed the “N” key. The answer keys could be 
pressed as soon as the transition started and participants 
were encouraged to press the correct key as soon as they 
knew the answer. 
There were four possible outcomes for each trial, each of 
which occurred equally often. Correct: All three icons suc-
cessfully reached the target window (Figure 16b). Er-
rorNeighbor: An incorrect icon moved; it was located 
closely to the expected one. ErrorOther: An incorrect icon 
moved; it was located far away from the expected one. Er-
rorUndershoot: The right icons moved, but one of them did 
not reach the target folder because it over or undershot. 
There were three versions of this task called singleIcon, 
tripleIcon, and distractor. The tripleIcon task was de-
scribed above and shown in Figure 16. The singleIcon task 
was identical to tripleIcon, but only a single icon was high-
lighted, moved, and needed to be verified. The distractor 
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task was a mix of both conditions. Only a single icon was 
highlighted and needed to be verified, but an additional two 
icons moved. The purpose of the distractor task was to pro-
vide insight about how motion on the screen affects user 
performance with animation and phosphor. 

b

a

 
Figure 16: The tripleIcon task. (a) Three icons are 
highlighted in green and a target window in red, 
then (b) three icons perform a transition, here 
shown using the phosphor interface condition. In 
this example the transition matches the earlier high-
lighting, so the correct response is to press “Y”. 

Interfaces 
We tested two interface conditions. The phosphor interface 
(Figure 16) used the speed line design described earlier and 
the copy visuals shown in Figure 5. Phosphor cues were 
shown the moment the transition was triggered and were 
removed when the participant hit the answer button. The 
animation interface used slow-in/slow-out animation at 
25 frames per second. If multiple icons moved, they moved 
in synchrony. There were five animation conditions with 
animation durations of 125ms, 250ms, 500ms, 1000ms, and 
2000ms, covering the combined range from several experi-
ments reported in the related work, e.g. [19, 28]. 

Experimental design 
The study was a 6 × (Interface: phosphor, 5 × animation) × 
3 (Task: SingleIcon, TripleIcon, Distractor) × 4 (Outcome: 
Correct, ErrorUndershoot, ErrorNeighbor, ErrorOther) 
within-subjects design. During the study, participants per-
formed each task in its entirety using all six interfaces be-
fore moving to the next task. Interface and task order were 
counterbalanced. Participants performed the same 60 trials 
(15 icon layouts x 4 outcomes) for each of the six interfaces 
of a given task in different randomized orders. This allowed 
us to control for the difficulty of the trial. Pilot testing and 
analysis on the study data showed no learning effects. For 
each trial, we recorded task completion time and error. 
Task time was counted from the moment the transitions 
started until the moment the participant pressed one of the 
answer keys. 

Participants received training at the beginning of the ex-
periment and prior to starting each block. At the end of the 
study, they filled in a questionnaire. Overall, the study took 
about 90 min per participant. 

Apparatus 
The experiment was run on three PCs running WindowsXP 
with LCD screens driven by NVIDIA graphics cards and 
offering a 60Hz refresh rate. The test program was 
1024x768 large (11”/28cm wide). Participants interacted 
with the system using a standard PC keyboard. 

Participants 
Twelve volunteers (4 female) between the ages of 22 and 
35 participated in this study. All had experience with 
graphical user interfaces and had normal or corrected to 
normal vision and color vision. Each received a small gratu-
ity for their time. 

Hypotheses 
Our main hypothesis was that the phosphor interface, which 
allows users to view transitions at their own pace, would 
perform as well as the best animation condition. We also 
assumed that the harder tasks would impact task perform-
ance across interface conditions, but we had no clear hy-
pothesis about how. 

Results 
We analyzed the performance data at the summary level, 
averaging the 15 trials within each condition. We used a 6 
(Interface) × 3 (Task) × 4 (Outcome) repeated measures 
analysis of variance (RM-ANOVA) for each of the depend-
ent measures, trial time and error rate. 
Task time phosphor vs. animation: For average trial time, we 
observed a main effect of Interface (F(5,55)=243.596, 
p<.001). Pairwise comparisons with Bonferroni correction 
showed significance across all pairs of interfaces, except for 
the Phosphor × 125ms, the 125ms × 250ms, and the 250ms 
× 500ms conditions (Figure 17a and c). 
Task time across tasks: We observed a significant main ef-
fect of Task (F(2,22)=8.974, p<.001). In pairwise compari-
sons using Bonferroni correction, we found that users were 
significantly slower in the TripleIcon condition 
(M=1160.4s) as compared to both the Distractor condition 
(M=995.9, p<.020) and the SingleIcon condition 
(M=1062.0, p<.019). As one would expect, tracking three 
icons takes longer that tracking a single icon. 
A planned contrast on the Phosphor task times found that 
all three task conditions were significantly different from 
each other (F2,22 = 17.68, p < .001). Trials of the TripleIcon 
task (1010.72ms) took participants 56% longer than the 
SingleIcon task (645.54ms). The additional two distractor 
icons of the distractor task increased task time by 25% to 
804.25ms per trial for the distractor task. 
Task time across outcomes: Finally, we found a significant 
main effect of Outcome (F(3,33)=966.709, p<.001). Pair-
wise comparisons showed all Outcomes significantly differ-
ent from each other. The ErrorNeighbor and ErrorOther 

176



 

 

outcomes were faster than the other two outcomes (Figure 
17c). These two error conditions involved a wrong icon 
moving, which participants detected early on and dismissed 
these trials instantly. Correct and ErrorUndershoot out-
comes, on the other hand, required participants to wait for 
the animated transitions to complete. Consequently, we saw 
higher task times overall and in particular a strong negative 
impact in the slower animation conditions.  
Error rate: Similarly, for the error rate metric, we observed 
a main effect of Interface (F(5,55)=4.704, p<.001), driven 
mainly by differences between the 2000ms animation Inter-
face and the Phosphor, 125ms, 250ms, and 500ms condi-
tions. We also saw a main effect of Task (F(2,22)=16.985, 
p<.001). As expected errors in the TripleIcon condition 
were significantly higher than that of Distractor (p<.006) 
and SingleIcon (p<.001) tasks (Figure 17d). Finally we saw 
a main effect of Outcome (F(3,33)=21.243, p<.001), with 
all pairs significantly different except for the correct v. Er-
rorUndershoot and ErrorNeighbor vs. ErrorOther. Error-
Other and ErrorUndershoot were easier to detect and there-
fore led to low error rates (Figure 17b). The error in the 
ErrorNeighbor task, on the other hand, was easily missed 
and led to an error rate even higher than the Correct out-
come. 

Subjective preference: Participants selected one “favorite” 
interface condition after completing each task. To simplify 
selection, we offered the four mnemonic choices ‘super 
fast’, ‘fast’, ‘slower’, ‘super slow’, and Phosphor. Prefer-
ences varied between tasks. For the singleIcon and the Dis-
tractor tasks, the fast condition was a favorite (7 out of 11 
participants). For the tripleIcon tasks, preferences were 
more balanced with 3 participants each preferring the fast, 
slow, and phosphor. The reason most commonly given for 
the lower popularity of the phosphor interface was that it 
was more distracting, especially in the distractor task. 
The slow animation conditions received very low satisfac-
tion rating throughout, despite their superior error rate. Sev-
eral participants expressed a strong dislike for the wait time 
caused by these conditions. 

Discussion 
The findings of our second user study indicate that the per-
formance of the phosphor interface is comparable to ani-
mated transitions. For all pairs but the fastest animation 
condition, Phosphor was significantly faster. For the 125 ms 
animation condition, there was no significant difference 
between conditions. This suggests that the benefits of phos-
phor do not come at the expense of reduced task perform-
ance. 

a b

c d
Time - Interface x Outcome 

phosphor animation

Time - Interface x Task

phosphor animation

phosphor animation phosphor animation

Error

Error

 
Figure 17: (a) Task time in seconds and (b) error rate by interface and task. (c) Task time in seconds and (d) error rate 
by interface and outcome (+/- standard error of the mean). 
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At the same time, the second study suggests there may be 
limits to the space-for-time approach behind phosphor. 
With paths reaching across the entire screen, users cannot 
foveate the entire path at once, and the resulting display can 
become distracting, as the subjective preference data indi-
cates. While we may be able to push this limit out by fine 
tuning the path visuals (e.g., thinner paths with lower opac-
ity), the contrast with the strong positive findings of the first 
study indicates that the greatest benefits of phosphor might 
lie in the space of localized effects (see also Proximity 
Compatibility Principle [34]). 
CONCLUSIONS 
Phosphor is a technique for explaining transitions in the 
user interface. Unlike animated transitions, it never forces 
users to wait. Our first study indicates that phosphor transi-
tions help improve users’ ability to process changes in the 
user interface. Our second study indicates that the benefits 
of phosphor over animated transitions do not come at the 
expense of task performance. 
As future work we plan to continue to investigate the learn-
ability of our design. We also plan to explore application 
areas that are traditionally less accessible to animation, such 
as glanceable displays. 
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